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ABSTRACT 

In this paper we study quantitative properties of non-negative (super) 

solutions for elliptic and parabolic partial differential equations of sec- 

ond order with strongly singular coefficients, in which we cannot expect 

Harnack's inequality in general. We show the doubling property of u 5 

with some small exponent 1 > 5 > 0 for non-negative weak supersolutions 

u. Furthermore, we show the doubling property of u q with large expo- 

nent 2(n -k 2)/n >_ q > 0 for non-negative weak solutions u of parabolic 

equations. 

1. M a i n  results  

In this paper we study quantitative properties for non-negative weak super- 

solutions of the following parabolic and elliptic partial differential equations: 

(1) Otu-div.A(t,x,u, Vu)+B(t ,x ,u ,  Vu) =0 i n Q =  (O,T) • l'~, 

(2) -div,4(x,  u, Vu) + B(x, u, Vu) = 0 in fl, 

where fl is a domain in ]R '~ with n > 3. For non-negative solutions it is well- 

known that  the so-called Harnack's inequality holds if coefficients have weak 

singularities (see, e.g., [Kul], [Za], [AS]). The purpose of this paper is to establish 

the doubling property of u ~ (Theorems 1.1 and 1.3) with some small exponent 

1 > 5 > 0 for non-negative weak supersolutions u instead of Harnack's inequality 

when coefficients have strong singularity. Furthermore, we establish the doubling 
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property of uq (Theorems 3.1 and 4.1) with larger exponents q > 0 for non- 

negative weak solutions u. These doubling property imply a kind of unique 

continuation property (Theorems 1.2 and 1.4). 

In the parabolic case, we assume A(t,  x, u, 4) and/3(t ,  x, u, 4) are measurable 

with respect to t, x, continuous with respect to u, 4, and satisfy the following 

structure conditions. 

(A.1) There exist constants 0 < A _< A < +cr such that for every ( t ,x ,u,~)  �9 
Q x R x R  ~ 

(i) IA(t ,x ,u,~)l  < AI~I, A(t ,x ,u ,~) .~  > Al~l 2, 
(ii) 113(t,x,u,~)[ < V(t,x)lu[ + b(t,x)[~ t, 
(iii) V(t, x) and b(t, x) are measurable and satisfy either (3) or (4): 

(3) ( /. sup sup r 2 1 (V(s,x)  +b2(s ,x) ) tdx  
se(O,T) zeR n ,r>0 IB~z)l ,(z)n~ 

< Kt < +c~, l < 3t < n/2, 

(4) sup sup f (V(s, x) + b2(s, x)) 
se(0,T) zea ~,,>0 JB.(z)n~ IX -- z[ n-2 dx < S < +oo. 

In the elliptic case, we assume 

(A.2) Let 1 < p < n. There exist cons tants0  < A_< A < +cx~ and weight 

w(x) >_ 0 such that  for every (x, u, 4) �9 ~ x R x R n 

(i) 1.4(x,~,~)l _< Aw(x)l~l p-x, A(x,u ,~) .~  > .x~(~)l~l", 
(ii) IB(x,u,~)l < V(z)lul p-a + b(x)l~l p- ' ,  
(iii) w(x) �9 AP-weight, V(x) and b(x) are measurable and satisfy either (5) or 

(6): 

(5) sup r P (  1 fB,.(z)N ( ~ ~ )lit 
zero,,>0 w(t~(z) )  + ( )p)tw(x) dx 

<_ Kt < +co, l < 3t < n/p, 

[ (v(x) + b2(x)) 
(6) p = 2 ,  w(x) =- i and sup [x_  z[n_ 2 dx <_ S < +cr zER n ,r>0 J Br(z)Af~ 

For the definition of Ap-weight we refer to [GR]. 
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Definition 1.1: (1) We say u is a non-negative weak supersolution of (1), if 
u > 0, u E L2((0, T); 1,2 W]o c (f~)), Otu E L2((0, T); L2(i2)), and for every r satisfying 
r > 0, r E L2((0, T); Wo1'2(i2)), u satisfies 

(7) r + A(t, x, u, Vu) .  Vr  + B(t, x, u, Vu) r  dxdt >>_ O. 

(2) We say u is a non-negative weak supersolution of (2), if u _> 0, u E Wllo'P (i2; w) 

and, for every r satisfying r > 0 , r  E Co~(~), u satisfies 

(8) ~ A(x, u, Vu)-  Vr  + B(x, u, Vu)r  dx > O. 

Notation: We use the following notation in the parabolic case: 

Cr = { ( t , x )  E Q l l x  - Xol < r, to - 2r  2 < t < t o } ,  

D +--{( t ,x)  E Q I I x - x o l < r ,  t o - r 2 / 2 < t < t o } ,  

D~- : {(t ,x) E QI I x - Xol < r, to - 2r 2 < t < to - 3r2/2}, 

where (to, Xo) is a fixed point in Q and Ix[ -- maxl<i<n Ix/I; [Q[, IDOl are the 
(n + 1)-dimensional Lebesgue measure. In the elliptic case we denote by B~ = 

B~(xo) a ball with radius r and center x0. We also use the notation 

/Af (X)dX= ~A~ /Af(X)dx" 

Now we state the main results of this paper. 

THEOREM 1.1: Assume (A.1). Let u be a non-negative weak supersolution of 
(1). Then there exist constants 5 E (0, 1) and C > 0 such that 

(9) / /DT U~ dxdt < C / /D+/2 u~ dxdt 

for every r > 0 with C2r c Q. The constants ~ and C do not depend on r, u. 

Theorem 1.1 implies the doubling property with small exponent 5 E (0, 1) for 

non-negative weak supersolutions u. For non-negative weak solutions u, we will 

establish the doubling property with larger exponents q of u q than Theorem 1.1 

(see Theorem 3.1). As a corollary of Theorem 1.1 we obtain the following type 

of unique continuation theorem. 
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THEOREM 1.2: Under the same assumption as in Theorem 1.1 we have the 

following: if for some (Xo,to) E Q and for every m > 0 

(10) f f udxdt  -- O(r m) as r -+ O 
J J D  r(Xo,to) 

holds, then u(t, x) - 0 for x E ~, t <_ to. 

Here we have used the notation 

D~(xo, to) = {(t ,x) C Q i l X -  Xot < r, to - 5r2/2 < t < t o -  2r2}. 

Note that  Dr(xo,to) --+ (xo,to) as r -+ 0. 

Similar results hold for elliptic equations (2). 

THEOREM 1.3: Assume (A.2). Let u be a non-negative weak supersolution of 

(2). Then there exist constants 5 E (0, 1) and C > 0 such that 

(11) /B  u ~ d x < - C / B  u~dx 
r r / 2  

for every r > 0 with B2r C ~. The constants 5 and C do not depend on r, u. 

Remark 1.1: In Theorems 1.1 and 1.3, the constant 5 is proportional to the 

quantity 1/(1 + O) I / p , o  = g l  or S. In conditions (3) and (5), we assume 

Kt < +oc for s o m e t  > 1. However, in the case w(x)  -- 1, if we assume an 

additional condition V(x)  + bP(x) C Aoo-weight (for the definition of Aor see 

[GR]), g l  < +oc is sufficient (see e.g. [Sch], [Pe]). 

THEOREM 1.4: Under the same assumption as in Theorem 1.3 we have the 

following: i f  for some xo E ~ and for every m > 0 

(12) f u d x  = O(r m) as r -+ O 
JB ~(~o) 

holds, then u(x) - 0 for x �9 ~. 

It is well-known that Theorem 1.3 implies Theorem 1.4 (e.g. [CG]). Theorems 1.3 

and 1.4 were first proved by Chiarenza and Garofalo in [CG] for the special case 

-div(A(x)Vu) + V(x )u  = 0, A(x)  is uniformly elliptic and V belongs to the 

Lorentz space L n/2,~176 Theorems 1.3 and 1.4 are the generalization of [CG] to 

the degenerate case under general structure condition (A.2). We also note that  

the condition (5) in (A.2) includes Lorentz space L n/2'~176 in the non-degenerate 

case. As far as I know, the estimates for parabolic equations in Theorem 1.1 and 

Theorem 3.1 and the estimate in Theorem 4.1 for elliptic equations are new even 

for linear equations. 
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Remark 1.2: Theorems 1.1 and 1.3 are focused on the case that  coefficients 

have strong singularity, for example V(x)  -- 1/Ixi 2, Ib(x)l = 1/tx t for the linear 

equations - d i v ( A ( x ) V u )  + b .  Vu + Y u  = 0. Under assumptions (A.1) and (A.2) 

Harnack's inequality does not hold in general and, moreover, solutions might 

be unbounded. Note that  if V, b have weaker singularities than (A.1) or (A.2), 

Harnack's inequality holds (e.g. [Kul], [Za]) and doubling estimates (9) and (11) 

are an easy consequence of it. 

Remark 1.3: We cannot expect the estimates in the Theorems above under 

general assumptions (A.1) or (A.2), if we remove the non-negativity of solutions 

u >_ 0. For example, without the condition u > 0 it is known that  to obtain 

unique continuation theorems for L = -d i v (A(x )Vu)  + b .  Vu  + Vu = 0, A(x) 

must be Lipschitz continuous for n _> 3. Moreover, Wolff recently showed that the 

strong unique continuation theorem does not hold in general in the case [b I E L ~. 

Various authors (e.g., N. Aronszajn, D. Jerison-C. Kenig, C. D. Sogge, T. Wolff, 

N. Garofalo-F. H. Lin, etc.) tried to obtain the unique continuation theorem 

under minimal assumptions on coefficients. Recent progress and references on 

this mat ter  in the elliptic case can be seen in [Wo]. We also note that similar 

doubling estimates as in Theorems 1.1 and 1.3 can be seen in [GL1,2] and [Ku2,3] 

without non-negativity of solutions. 

In section 2 we prove Theorems 1.1 and 1.2. In section 3 we show furthermore 

the doubling property of u q dxdt with 0 < q < 2(n + 2)/n for non-negative 

weak solutions u of parabolic equations. In section 4 we mention the proof of 

Theorem 1.3 briefly and show the doubling property of u q dx with 0 < q _< 

2n/(n - 2) for non-negative weak solutions u of elliptic equations. 

2. P r o o f  o f  T h e o r e m s  1.1 a n d  1.2 

In this section we give the proof of Theorems 1.1 and 1.2. 

LEMMA 2.1: Assume a = a(x) E A2 and that there exists a constant C such 

that 

for every r > 0 and D~ , D + with C2~ C Q. Then we have 

(13) 

Proof: 

C 

1 1 \ 
<_ C -- va dxdt ) . 

a e A2 implies a(Br)  <_ Ca(Br/2). Hence a (D +) _< Ca(D+~2). By the 
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assumption we have 

1//o a(D +) +~ 

Taking f = XD+/2 , 

LHS - a(D+12) 
o ( m )  

RHS = 

K. KURATA 

f V ~ v a  dxdt 

and 

Isr. J. Math. 

" (~Dr+) SSD +v-lGdxdt) 
_<. :_ _' +, > S/,+ :vo 

( ~(D~-) ~ l /a 
I 

t, f fDr vo dxdt ) 

Thus we obtain 

~ /' 1 

and we have the desired estimate.  

1/2 

va dxdt) 1/2 (J  ~ ( ~ x d t ~  

va dxdt) l/2 < C( a(l+r/2) i iD+/2 va dxdt) 

| 

Let U = {(t ,x)[  [t[ < 1, Ix] < 1} and let C + = { I x -  a[ < p, 0 < t - to  < p2} 
and C -  = { [ x - a [  < p, 0 < t 0 - t  < p2} be s u b d o m a i n s i n  U for a fixed 

(to, a) E U. Define k~(s) = v ~ if s > 0 and 0 if s _< O. The  following lemma plays 

an impor tan t  role in the proof  of Theorem 1.1. 

LEMMA 2.2: Let e > 0 and u be a non-negative weak supersolution of (1) on 
U' = {[t[ < 1, ix I < 2}. Put v = - l o g ( u + @  Then wehave 

1 f f ~  ~(v(x')-v(r < c. (14) tC+HC-] 'ec+,y, ec- 

Here C is a constant independent of (to, a) E U and p. 

The proof of Lemma 2.2 relies on the argument of Moser [M]. We first recall 

the following lemma. 
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LEMMA 2.3 (M, Lemma 3, p. 120): Let p(x) be a positive continuous function 

with supp p C Rr = {Ix[ _< r}. Suppose the level sets {x e Rr;p(x) > c} are 
convex for each positive constant c. Then we have 

for every f 6 HI(Rr), where ] = ( f  f p d x ) / ( f  pdx). 

Proof of Lemma 2.2: Let r = II?=lXi(Xi), Xi(Xi) = 1 on Ixi] < 1, 0 on 

[xi[ > 2, and Xi is linear on 1 < Ix d < 2. Then the level sets of r are convex. 

Let - 1  < tl < t2 < 1 and tin(t) be a cut-off function satisfying ~n(t) = 1 on 

[tl,t2], 0 on (t2 -l- l / n ,  1)U ( - 1 , t l  - 1/n). Taking (I) = r -1 as a 
test function in (7) and letting n ~ 0% we obtain 

f ;, + A (u + e) 2 dxdt <_ 
2 t = t  1 J t l  2 

2A ( u + e )  dxdt + (u + e) dxdt + (u + e) dxdt. 
1 2 2 1 2 

By Schwarz's inequality there exists a constant C > 0 such that 

I t = t 2  t2  

Z'/r _<C -F r ~- V))dxdt < C(1 + K1)(t2 - tl)IR2t. 
1 

Applying Lemma 2.3 to p = r and V(t) = (fR2 v(t, x)r dx)/(fa2 r dx), 
it follows that  

(V(t2)-V(tl)) /R2~)2dx-l-2~ ~t: 2 /R2(v-Y(t))2r dxdt <_ C(1-l-Kl)(t2-tl)]R2,. 

Since IR21/fR2 r dx is comparable to a positive constant, 

V(t2) - V(t i)  + C ftt= fR t2 - tl IR21(tz - tl) 1 (v(t, x) - V(t))2r dxdt < C. 
2 

Since V(t) is absolutely continuous, taking t2 --+ tl ,  we obtain 

(16) dV(t)d_____i_ + ~C fR, (v(t, x) - V(t)) 2 dx _< C, Itl < 1. 
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We may assume V(O) = O, because the estimate (16) does not change if we replace 

v by v + constant. Once we obtain this estimate we can conclude the desired 

estimate by the argument as in [M, pp. 122-123]. | 

Proof of Theorem 1.1: Let D + = {Ix - a I < p, p2/2 < t - t o  < p2} and 

D- = { [ x - a  I < p, p2/2 < t o - t  < p2}. Once we obtain the estimate in 

Lemma 2.2, we have the following John-Nirenberg type estimate by the main 

lemma in [M, p. 106]: 

(17) 1 i L r  v(y'))dx'dy' < 1, 
ID+tlD-I 'eD+,r 

where (I)(s) = Ce <'s for some a and C depending only on n. By the transforma- 

tions t --+ aZt + to and xa ~ axa + Xo,a, we can conclude that (17) holds for every 

D +, D~- with Cz~ C Q. Therefore there exists a constant 5 > 0 such that  

( r - ~  i fD (u + ~)~ dxdt) ( r - ~  i iD+(U + e)-~ dxdt) < C 

for every r > 0 and D~-, D + with C2r C Q. Taking e --> 0 we have 

(18) f /o f fo u 
By Lemma 2.1 with a(x) = 1 we can conclude 

/ i D  u~dxdt<-C//D u~dxdt" ' 

Proof of Theorem 1.2: By Theorem 1.1 we have 

[ 
SD (to,~o) u ~ dxdt u ~ dxdt _ < C z j ILo.o> 

(19) < r re+n+2 u ~ dxdt 

for each I, m E AT. Choose m > 0 such that C < 2 m+~+2. Then 

J JD2. ~ (to,So) 

-~ 0 (l-~ ~). 

Hence we obtain u(t,x) = 0 on Dr(to,xo). Since v > 0 is arbitrary, u must 

vanish on a backward parabolic region with respect to the point (to,Xo). By 
I I using the argument above for different points (to,Xo) , we can attain the desired 

result. I I  
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3. Doub l i ng  p r o p e r t y  for parabol ic  equa t ions  

In this section we study the doubling property of u q dxdt for large exponent q in 

the case that  u >_ 0 is not only a weak supersolution of (1) with (A.1) but also a 

subsolution of 

(20) 

for/Y satisfying 

Otu - divA(t, x, u, Vu) + B'(t, x, u, Vu) <__ 0 

IZ3'(t,x, u,r S w(t ,x) lul  + c(t,x)l~l. 

We assume the following for W + c2: 

(A.3) We can write W(t ,x )  + c2(t,x) 
(j = 1,2) and Qj(x) satisfy 

(21) 

sup sup r 2 1 Ql(s , x ) tdx  < co 
se(O,T) zefLr>0 [Br(z)]  .(z)nfl 

= Ql(t, x) + Q2(t, x), Qj(t, x) >_ o 

for some 1 < t ~_ n/2, 

B Q2(s,x) 
(22) sup lim sup ix--_ z ~  ~ dx <_ co. 

s~(0,T) r-~0zC~ ~(z)n~ 

Here eo is a sufficiently small constant depending only on n, A, A and f~. 

THEOREM 3.1: Let u be a non-negative weak supersolution of (1) with (A.1) 

and a weak subsolution of (20) with (A.3) and let 0 < q <_ 2(n + 2)/,~. Then 
there exist constants 0 < l' < l, 0 < m, 0 < m" < m', L > 0 and C such that 

(23) / /QT Ua dxdt <_ C / /Q+ Uq dxdt 

for every r > 0 with Q+ir C Q. Here 

Q~- = { I x - x o [  < lr, t o -  ( m + m ' ) r  2 < t < to - re ' r2} ,  

Q+ ={Ix - Xo I < l'r, to - m"r 2 < t < to}. 

COROLLARY 3.1: Let 0 < q _< 2(n + 2)In and let u be a non-negative weak 

solution of 

Otu - div(A(t, x)Vu) + b(t, x) . Vu  + V(t, x)u -- 0 

in Q = (0,T) • f~, where f~ is a bounded domain in ]Rn,n _> 3. Assume A(t ,x)  
is uniformly elliptic, V + satisfies (3) or (4) and V -  + [b[ 2 satisfies (A.3). Then 

the same estimate as in Theorem 3.1 holds. 

First, we note the following Sobolev-type inequality. 
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LEMMA 3.1: Let q = 2 ( n +  2)/n and Q ~  = { I x -  x0F < r, to-  r2/2 < t < to}. 
Then we have 

(24) f fQ [u(t,x)[qdxdt <C(r2/ fQ IVU[2dxdt + f fQ [U[2 dxdt) 
"~ 4/n 

�9 @2 sup [Ju(t , ' ) l l~( . .~o))]  �9 
tE(to--r2/2,to) 

Proof  This inequality essentially can be seen in [M; Lemma 2 I. We may assume 

r = 1. By Sobolev's inequality 

II~(t, .)tlq _< C(llVu(~,-)lll + lt~(t, .)fl~)'~/2(n+2)llu(t, .)t1~/(~+2) 

holds for every t. Hence we arrive at the desired estimate�9 | 

We also note the following Caccioppoli-type inequality. 

LEMMA 3.2: Under the same assumptions as in Theorem 3�9 there exist a 

constant C depending only on n, A, A such that 

ff .  ( X )ffR'u[2dxdt, (25) , IVul 2 dxdt <_ C (p _ p,)----------2 + (T T'------~ 

(26) 

where 

( 1 ) / ~  
max [lul2(t, xldx < C lp,12 + lul2dxdt, 

t e ( - ~ - ' , o )  j - ( p  - (~" - ~") 

R :  {Ix] < p , - ~ < t < 0 ) ,  R' : {lxl < p', -~ '  < t < 0}, 

O < f f  <p,  0 < ~ ' < ~  -~. 

Proof: This was shown in the case b = V K 0 in [M, Eq. (3.3) and (3.4)]), but 

the same proof works under assumptions (A.1) and (A.3), since we can control 

lower order terms by using well-known weighted norm inequalities (see, e.g., 

Lemma 4.1 below and [gul,3], [Be], [Sch]). We omit the details. One can see 

the detailed computations in [AS, Eq. (35)] for equations with somewhat mild 

singular coefficients. | 

Furthermore, we establish the following reverse Hblder inequality by using 

Lemma 3.1 and the argument in [CFG]. 
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LEMMA 3.3: Let 0 < p < 2 and 0 < 7- < 1. Then there exists a constant 
C : C(n,  A, A,p, T) such that 

(27) (l~lf fQ lUl2dxdt)ll2<_C(i-~tf fQ lUlPdxdt) 1/" 
for every Q~r C Q. 

Proof." By a scaling argument, it suffices to show the case r -- 1. Let 0 < p < 2 

and I(s) : ( f  fQ8 lu12 dxdt)l/2 with 7- _< s _< 1. We shall show that  1(7-) is 

bounded under the assumption f fQ11 ulp dxd t  = 1. We may assume I(7-) > 1, 

otherwise there is nothing to be done. Hence I(s) > 1 for s >_ T. Choose 

0 E (0, 1) such that  (2 - Op)/(1 - 0) -- 2(n + 2)/n. Using nSlder's inequality for 

I(s) : ( f  fQ, lul2-~ ~ dxdt) li2, we have 

1--O O 

(SSo (SSo 
1--0 

( i f , , ) - -  2(,~+2) 2 
< u - dxdt 

s 

Lemma 3.1 and Lemma 3.2 yield 

1 
(28) I(s) < C( (t--s)2 f fQ ' 

I - - 0  2 l - -O  

2 t b f o r T < s < t < l ,  w h e r e 0 * = ( l + n ) ( 1 - - 0 ) < l .  S e t s =  for s o m e b > l w i t h  

7- < t b. Then it follows that  

log I( t  b) < log C + O* 1 1 O* log I(t) 
t - t 7 1 ~  t~----5 + t " 

Integrating over (r a/b, 1), we have 

; 1  logI(~;b) d t <  C t -~-0" [1  logI(t)  dt. 

J~ l ib t - -  J r l / b  t 

Since T < T Ub and log I(t) >_ O, it follows that 

f L a log I(t) 1 log I($) dt < dt. 
1/b t - t 
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By the change of variable u = t b, 

f11/b log(tb)t dt =lb f l  log(U)u du 

holds. Hence we obtain 
(~ ) / 1  lOg/(t) 

(29) - O* dt < C. 
t 

Taking b > 1 such that 1 _ 0* > 0, we can conclude log I(~) < C. | 

By combining Theorem 1.1, the Caccioppoli inequality and Lemma 3.1 we can 

complete the proof of Theorem 3.1. 

Proof of Theorem 3.1: Let 5 > 0 be the constant in Theorem 1.1. For 5 < q < 2, 
Lemma 3.3 with ~- -- 2 and Theorem 1.1 yield 

1 1 1/~ (r~-~ //D, Uqdxdt) I/q ~ C(~--~-~ f JJD~ u'dxdt~] 

\ r  J JD~ ] 
where 

3 3 2  
D~ : {Ix - Xol < 2 r / 3 4 i ,  to - (~ + )~2 < t < to - ~ ) ,  

D~ -- {Ix - xol < ~ / v ~ ,  to - ,'~ < t < to - 3, .2} ,  
4 

D~ 3 = {Ix - xol < r/2v~, to - r2/16 < t < to}. 
Hence by H51der's inequality we obtain the doubling estimate of uq dxdt for 

0 < q < 2 :  

(30) ( r  ~ f f \l/q_c< ( f dxdt) 1/q , ,  u qdxdt, \r---~ j j D ~  uq J dD~ ] 
On the other hand, Lemma 3.1 and the Caccioppoli-type inequality yield the 

following reverse H51der-type estimate: 

f w,+~) 

1 dxdt) ~ 

1 

�9 ( 1  sup f exe ) 
\ rn t JB. 

( //o ): 1 u 2 dxdt (31) <C ~ 
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for every 0 < r < 1. Hence we obtain the doubling estimate for every q < 

2(n + 2)/n by using HSlder's inequality and the doubling estimate of u 2 dxdt. 
II 

4. D o u b l i n g  p r o p e r t y  for  e l l ipt ic  e q u a t i o n s  

By using the following lemmas, we can prove Theorem 1.3 in a similar way as in 

the proof of Theorem 1.1. So we omit the details of the proof of Theorem 1.3. 

LEMMA 4.1 (CW, Theorem 1.2): Let w E Ap and a(x) > 0 satisfy 

sup r p [ 1  /B a(x)tw(x)dx) Ut < K < e~ 
r>0, ze~  \w(Br(z)) ~(z) 

for some n/p  >_ t > 1, where w(B~(z)) = fs~(z) w(x) dx. Then 

(32) f a(x)lul p dx < CoK f IVulPw(x) dx 
JB ~(~) JB~(z) 

holds for every u E Co~(Br(z)) and r > O. 

LEMMA 4.2 ([FKS]): Let w be Ap-weight. Then we have 

/B ( 1 /B [Vu'Pw(x)dx) lip' 
1 I ~ -  (~)~1 ~x < c r  ~ r (33) IB~t ~ 

__1s 
(u)r IBd udx. 

r 

In this section, we study furthermore the doubling property of u q dx for large 

exponent q in the case that u > 0 is not only a supersolution of (2) satisfying 

(A.2) with p = 2 and w(x) = 1, but also a subsolution of 

(34) -divA(x,u, Vu) + B'(x,u, Vu) ~ 0 in 12 

for another B', where ~ is a bounded domain. We assume for B'(x, u, ~) that  

IB'(x,u,~)[ <_ W(~)l~l + ~(~)1~1 

and: 
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(A.4) 

Qj(x) satisfy 

( j; (35) sup r 2 1 Ol(x) t dx 
~en,~>o IB~(z)l ~(~)n~ 

(36) 
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We can write W(x) + c2(x) = Ql(x) + Q2(x), Qj(x) > 0 (j = 1,2) and 

_<co for s o m e l < t < _ n / 2 ,  

B Q~(~) 
lim sup ix--z--~_ 2 dx < co. 
r--*O zEft ,.(z)ngt 

(39) (/B~/ [ul2 dx) 1/2 ~_ Cl ( fB  lUlP dx) 1/p 

holds for every B2r C ~t. 

Proof of Proposition 4.1: First of all, the doubling property of u ~ dx and 

Lemma 4.4 imply that  u 2 dx satisfies the doubling estimate: 

~ C(C2~,./4"lLSdx)l/8 ~_CC2/6(~./4u2dx)l/2 

LEMMA 4.4: 

Then 

Here e0 is the same constant in (A.3) depending only on n, A, A and f~. 

LEMMA 4.3: Let u be a subsolution of (34). Assume (A.4). Then we have the 
Caccioppoli-type inequality: 

/o 1/o (37) [Vu[ 2 dx <_ C (t - s) - - - - - -~ ]u[ 2 dx 
s t 

for every 0 < s < t with Bt C ft. Here C = C(n, A, A, fl). 

Proof: This can be proved by using Lemma 4.1 with w(x) =- 1 as in [Kul, 

Lemma 2.2]. | 

PROPOSITION 4.1: We assume that a non-negative function u satisfies the 
Caccioppoli-type inequality and the doubling condition with exponent d E (0, 1). 

Then for every 0 < q <_ 2n/(n - 2),r > 0 with B4~ C ~, we have 

(38) /B u q d x ~ - C / B  uqdx" 
r r / 2  

To prove Proposition 4.1 we note the following reverse HSlder-type inequality 

which can be proved in the same way as in Lemma 3.3. 

Let u satisfy the Caccioppoli-type inequality (37) and 0 < p < 2. 
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The doubling property of u 2 dx and Lemma 4.4 assure that  u q dx satisfies the 

doubling estimate for 0 <: q < 2. On the other hand, the Caccioppoli-type 

inequality and the doubling property of u 2 dx yield 

C C' 
/Br ]Vu]~ dx < v i  /B~ u2 dx <-- -~  /a~ u2 d x  

By Sobolev's inequality, we obtain 

(/B )1/2" (/B )1/2 u 2. dx < C 2* 2n r u2 dx - . r - ' n - 2  

That  is, u 2 satisfies the reverse Hhlder inequality, and hence u 2 E Aoo. It is well- 

known that  this implies u 2 E A r  for some r > 1 (see e.g. [GR, pp. 403-404]). 

Also now we conclude that  u 2. dx satisfies the doubling property and hence u q dx 

satisfies the doubling property even for every 2 < q <_ 2*. | 

Proposition 4.1 and Theorem 1.3 yield 

THEOREM 4.1: Let u be a non-negative weak solution of 

- d i v ( A ( x ) V u )  + b(x ) .  Vu + V(x )u  = 0 

in a bounded domain f~ C R'~,n >_ 3. Assume A(x)  is uniformly elliptic, V + 

satisfies (5) or (6) with p = 2 and w(x)  -- 1, and V -  + Ibl 2 satisfies (A.4), 

where V = V + - V - ,  V + = max(V, 0), V -  = max(-V,  0). Then for every 

0 < q <_ 2n / (n  - 2) , r  > 0 with B4r C ~, we have 

(40) /B  u q d x ~ - C f B  uqdx" 
r r / 2  

Proof  Since V + + [bl 2 satisfies (5) or (6) in (A.2) with p = 2, w _-_- 1, u is a 

supersolution of (2) with (A.2). Hence by Theorem 1.3 there exists a constant 

E (0, 1) such that  u ~ dx satisfies the doubling estimate. On the other hand, u 

is a subsolution of (34) with (A.4). Therefore, Theorem 4.1 yields the desired 

estimate. | 

5. C o n c l u d i n g  r e m a r k s  

1. Although in Theorem 1.1 we only deal with the non-degenerate case, we can 

obtain similar results even in the degenerate case for (1) under the assumption 

w E Al+2/n with some modification of the set D~. Here we assume the condition 

(h.2) (i) with p = 2 for ,4(t, x, u, ~) and the condition (A.2) (ii), (iii) with p = 2 
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for 13(t, x,  u, ~) (see [CS1]). We note that Al+2/n C A2, since it is well-known 

that  Ap C Aq for p < q. Moreover, for the equation 

(41) w(x)Otu  - d i v ( w ( x ) V u )  + B(t ,  x,  u, Vu) -- 0 

we can obtain the same results on D ~  under the assumption w C A2 and the 

same assumptions for B(t, x, u, ~) (see [CS2]). 

2. We can replace the condition (3) in (A.1), which only allows a uniform 

singularity in the time variable, to the LP'q-type condition, that is IV[ + [b[ 2 C 

LP,q(Q) with n / 2 p  + 1/q for some p ,q  > 1. We also mention that  in the def- 

inition of the weak solution of (1) we assumed a somewhat strong condition 

ut E L2((0,T); L2(gt)). However, all the results of this paper would hold for 

general weak solutions u E L ~176 ((0, T); L 2 (f~)) n L 2 ((0, T ) ; W  1'2 (~)) by using the 

regularization argument in [AS, pp. 119-121]. 

3. Finally, we mention an application of Theorem 1.3 to a nonlinear equation. 

Let u E H 1 N L p be a weak solution of - A u  = u p - u q, u >_ O, 1 < q < p, 

n / ( n  - 2) < p. In general we do not know the regularity of u, for example in 

the supercritical case p > (n + 2) / (n  - 2). In [Pal it was proved that  the weak 

solution is regular if 

f 

r - ~  ] u p dx < C (42) s u p  
r > 0 , x  J Br(x) 

for A :> n -- 2p / (p  -- 1). If we apply Theorem 1.3 directly, the constant 5 > 0 

in the estimate depends on a certain norm of V = - u  p-1 + u q-1 or V = u q - l ,  

hence it might depend on a solution u. Actually, by using the method of [Pal, 

we can show that  

/ ,  

(43) r 2p/(p-1)-n / U p dx ~ C 
JB ~(~) 

for every 1 > r > 0 with B~(x)  C f~. This implies that  V = u v-1 and V = u q-1 

satisfy the condition (5) in (A.2) with t = p / ( p - 1 )  E (1, n/2] and K t  independent 

of u. Therefore, we obtain uniform estimate (11) for u; that is, the constant 5 is 

independent of u. 
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